Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0368420080510040291
Journal of Plant Biology
2008 Volume.51 No. 4 p.291 ~ p.296
Mitogen-activated protein kinase is involved in the symbiotic interaction betweenBradyrhizobium japonicum USDA110 and soybean
Lee Hyoung-Seok

Kim Ji-Tae
Im Jong-Hee
Kim Ho-Bang
Oh Chang-Jae
An Chung-Sun
Abstract
Mitogen-activated protein kinase (MAPK) plays an important role in mediating the intracellular transmission and amplification of extracellular stimuli. We examined whether MAPK is involved in the signaling process during the early step of nodule formation. A genistein induced culture filtrate (GCF) ofBradyrhizobium japonicum was prepared for inducing an early response by soybean root hairs via Nod factor. Upon treatment, several types of deformations were seen, demonstrating that GCF contains active Nod factor molecules. In-gel kinase assays showed that treating soybean roots with GCF induced the rapid activation of two protein kinases (molecular masses of 47 kD and 44 kD), which phosphorylate myelin basic protein (MBP). To identify the activated kinase, we prepared an antibody againstGMK1 (Glycine max MAP kinase 1), based on information from SIMK (an alfalfa MAP kinase) and a soybean EST database. An immunocomplex kinase assay with the GMK1-specific antibody revealed that the 47-kD kinase in GCF-treated seedlings is indeed GMK1. Consistent with many other MAP kinases, GMK1 is likely to be under post-translational regulation. Considering these results and previous reports from soybean, GMK1 seems to be a signaling mediator with a broad range of stimuli, including a fungal elicitor, wounding, and the symbiotic interaction between soybean and B.japonicum.
KEYWORD
Bradyrhizobium japonicum, in-gel kinase assay, MAPK, root nodule, soybean, symbiosis
FullTexts / Linksout information
 
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)